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a b s t r a c t

Four-layer framework for combinatorial optimization problems/models domain is suggested for applied
problems structuring and solving: (1) basic combinatorial models and multicriteria decision making
problems (e.g., clustering, knapsack problem, multiple choice problem, multicriteria ranking, assign-
ment/allocation); (2) composite models/procedures (e.g., multicriteria combinatorial problems, morpho-
logical clique problem); (3) basic (standard) solving frameworks, e.g.: (i) Hierarchical Morphological
Multicriteria Design (HMMD) (ranking, combinatorial synthesis based on morphological clique problem),
(ii) multi-stage design (two-level HMMD), (iii) special multi-stage composite framework (clustering,
assignment/location, multiple choice problem); and (4) domain-oriented solving frameworks, e.g.: (a)
design of modular software, (b) design of test inputs for multi-function system testing, (c) combinatorial
planning of medical treatment, (d) design and improvement of communication network topology, (e)
multi-stage framework for information retrieval, (f) combinatorial evolution and forecasting of software,
devices. The multi-layer approach covers ‘decision cycle’, i.e., problem statement, models, algorithms/
procedures, solving schemes, decisions, decision analysis and improvement.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Multi-layer approaches to computers and networks are
well-known (e.g., [105,106]). In this article, a multi-layer approach
is used for structuring and solving of applied modular problems.
The significance of model-based problem solving environments,
problem solving engines, and decision support systems has been
increased (e.g., [1,29,34,51,77,87,91,104,109]). This is crucial in
computer science, engineering design, mathematics, management,
etc. In addition, it is reasonable to point out increasing impor-
tance of the stage of problem formulation/statement/structuring
(e.g., [6,16,19,24,33,38,79,81,92,97,100,102]). Note the issues of
problem formulation/statement/structuring are important for
well-structured, ill-structured, and unstructured problems (e.g.,
[39,99–101,108]).

In the case of modular applied systems, examination processes
(system analysis and modeling, problem structuring/solving) are
based on analysis and modeling of combinatorial objects and rela-
tions over the objects. Fig. 1 depicts a ‘‘combinatorial world’’ frame.
Here the basic kinds of combinatorial objects (or structural forms
[42]) are as follows (e.g., [2,30,88,114]): element (item), set, multi-
set, chain (string), list, partition, order, star, ring, tree, parallel-
series graph, hierarchy (and ‘‘layered structure’’, ‘‘cylinder’’), grid,
multigraph, hypergraph, etc.

Combinatorics is concerned with the study of arrangement, pat-
terns, designs, assignment, schedules, connections, and configura-
tions [93]. Thus, combinatorial optimization problems are
targeted to the following basic goals (and their combinations): par-
titioning, routing, scheduling, assignment, location, placement,
covering, packing, etc. (e.g., [22,26,30]). The second group of basic
combinatorial problems consists of discrete multicriteria decision
making problems: (a) choice of the best alternative, (b) ranking
(e.g., linear ordering, group ranking to get a linear ordered alterna-
tive subsets), and (c) clustering (e.g., [36,46,83,94,117]). The third
kind of considered combinatorial problems is targeted to design/
approximation of structures (e.g., graphs, networks, hierarchies),
for example: (i) direct design of a structure (e.g., an ‘‘optimal’’ tree),
(ii) addition of edges/links and/or nodes (e.g., hot link assignment
problems, graph augmentation problems), (iii) spanning problems
(e.g., minimum spanning tree for a graph, minimum spanning
Steiner tree, a ‘‘minimum’’ spanning k-connected structure) (e.g.,
[15,20,23,25,28,30,88,110–112]).

In general, there exist two basic approaches to modular system
modeling: (1) usage of complex models (e.g., finite state machines,
Petri nets), (2) combination of some more simple problems/mod-
els. Here the second approach above is used. Subproblems of
several kinds are used as follows (e.g., [33,51,99–101]): (i) formal-
ized, (ii) well-structured, and (iii) ill-structured (e.g., multicriteria
ranking, expert judgment), and (iv) unstructured. Thus, a result
of an applied problem analysis can be considered as a problem
frame (or multi-problem scheme, problem ‘‘space’’) (e.g.,
[33,52,60,61,104]).

0965-9978/$ - see front matter � 2011 Elsevier Ltd. All rights reserved.
doi:10.1016/j.advengsoft.2011.07.013

q Published draft: M.Sh. Levin, Towards four-layer framework of combinatorial
problems. IEEE COMPSAC 2008, 873–878, 2008.

E-mail address: mslevin@acm.org

Advances in Engineering Software 42 (2011) 1089–1098

Contents lists available at SciVerse ScienceDirect

Advances in Engineering Software

journal homepage: www.elsevier .com/locate /advengsoft



Author's personal copy

Mainly, our four-layer composite framework is based on combi-
natorial optimization and decision making problems/models
examined by the author (e.g., [46,51,56,58]). The framework is tar-
geted to modular approaches in integrated multi-disciplinary ap-
plied domains. Concurrently, this multi-layer architecture can be
useful for education/training as well ([55,60,61]). Further, the con-
sidered approach may be useful from the viewpoint of computa-
tional thinking [115].

2. Basic problems/models

Multicriteria ranking can be considered as follows. Let
X = {1, . . . , i, . . . ,k} be a set of items (alternatives) which are evalu-
ated upon criteria � = {1, . . . , j, . . . ,d} and zi,j is an estimate (quanti-
tative, ordinal) of item i on criterion j. The matrix {zi,j} is a basis to
build a partial order on X, for example, through the following
generalized scheme: (a) pairwise elements comparison to get a
preference (and/or incomparability, equivalence) binary relation,
(b) building a partial order on X. Here the following partial order
(partition) as linear ordered subsets of X is searched for (Fig. 2):

X ¼
Sm

k¼1XðkÞ; jXðk1Þ \Xðk2Þj ¼ 0 if k1 – k2, i2 � i1 "i1 2X(k1),
"i2 2X(k2), k1 6 k2 (sorting problem) (e.g., [46,94,117,118]). Set
X(k) is called layer k, each item i 2X gets priority ri that equals
the number of the corresponding layer. This problem belongs to
a class of ill-structured problems by classification of Simon [101].
The list of basic techniques for multicriteria selection (sorting
problem) is the following (e.g., [8,117,118]): (1) multi-attribute
utility analysis, (2) multi-criterion decision making based on inter-
active procedures, (3) Analytic Hierarchy Process (AHP), and (4)
outranking techniques.

Clustering problem is a basic scientific problem in many domains
(e.g., [36,83,84]):

Divide an initial set of elements into groups (subsets, clusters) to
minimize the ‘‘distances’’ (or proximities) between elements in the
clusters (i.e., ‘‘intercluster distances’’).

The following data can be used as initial information: (a)
parameters of each element and/or (b) proximity (‘‘distances’’)

between elements. Basic clustering algorithms are described in
[36]. Often polynomial heuristics are used (e.g., agglomerative
algorithm). In our study, our modification of agglomerative algo-
rithm is mainly used [53].

The basic point-to-point shortest path problem is the following
(e.g., [12,30]). Given a directed connected weighted graph
G = (A,E) (A is the set of vertices/nodes, E is the set of arcs, there
is a nonnegative weight w(e) "e 2 E, two vertices are specified as
source a 2 A and destination b 2 A). The problem is:

Find a shortest (minimal) path from a to b, where the total length
of path ha,bi corresponds to the sum of arc weights in the path.

The standard algorithm for this problem is the one developed
by Dijkstra (e.g., [30]) which runs in O(jEj + jAjlogjAj) [27].

The basic knapsack problem is ([30,41]):

max
Xm

i¼1

cixi s:t:
Xm

i¼1

aixi 6 b; xi 2 f0;1g;

where xi = 1 if item (element) i is selected, ci is a value (‘‘utility’’) for
item i, and ai is a weight (or required resource). Often nonnegative
coefficients are assumed. The problem is NP-hard [30]. In the case of
multiple choice problem (Fig. 3), the items are divided into groups
and it is necessary to select elements (items) from each group while
taking into account a total resource constraint (or constraints):

max
Xm

i¼1

Xqi

j¼1

cijxij s:t:
Xm

i¼1

Xqi

j¼1

aijxij 6 b;
Xqi

j¼1

xij ¼ 1 8i ¼ 1;m; xij

2 f0;1g:

Assignment/allocation problems are widely used in many domains
(e.g., [3,10,11,13,21,30,85,89]). Simple assignment problem involves
correspondence matrix A ¼ kaijkði ¼ 1;n; j ¼ 1;n), where aij is a
profit to assign element i to position j. The problem is (e.g., [30]):

Find the assignment p = (p(1), . . . ,p(n)) of elements to positions
which corresponds to a total effectiveness:

P
iaipðiÞ !max.

The problem can be solved efficiently. More complicated well-
known model as quadratic assignment problem (QAP) includes
interconnection between elements of different groups (each group
corresponds to a certain position) (e.g., [13,22,89,90]). Let a non-
negative value d (i, j1,k, j2) be a profit of compatibility between item
j1 in group Ji and item j2 in group Jk. Also, this value of compatibility
is added to the objective function. Thus, QAP (NP-hard) is:

Fig. 1. Illustration for ‘‘combinatorial world’’.

Fig. 2. Scheme of multicriteria ranking. Fig. 3. Illustration for multiple choice problem.
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max
Xm

i¼1

Xqi

j¼1

ci;jxi;j þ
X
l<k

Xql

j1¼1

Xqk

j2¼1

dðl; j1; k; j2Þxl;j1 xk;j2 ;

l ¼ 1;m; k ¼ 1;m

s:t:
Xm

i¼1

Xqi

j¼1

ai;jxi;j 6 b;
Xqi

j¼1

xi;j 6 1 8i ¼ 1;m; xi;j 2 f0;1g:

In addition, it is reasonable to point out other basic combinatorial opti-
mization problems: routing, scheduling, traveling salesman problem
(TSP), clique, independent set problem, packing problems, matching,
augmentation problems, the longest path problem, hotlink assign-
ment problems, graph coloring, etc. (e.g., [2,14,20,22,25,26,28,30,37,
40,44,86,88]).

3. Decision cycle, four-layer framework

Generally, our approach is based on ‘decision cycle’ (Fig. 4) [51]
with orientation to stages as follows: (a) analysis of the application
problem(s) (i.e., applied domain), (b) construction of problem/
model frame (‘‘space’’). Composite (modular) solving schemes
(strategies) can be obtained concurrently as an integration of algo-
rithms and procedures for the selected problems/models.

Our four-layer model/problem framework consists of the fol-
lowing layers (Fig. 5):

Layer 1. Basic combinatorial models and multicriteria DM-mod-
els: multicriteria ranking, clustering, knapsack problem, multi-
ple choice problem, shortest path problem, clique problem,

assignment/allocation, traveling salesman problem (TSP), graph
approximation, etc.
Layer 2. Composite models/procedures, mainly, as multicriteria
problem versions (clustering, knapsack problem, multiple
choice problem, combinatorial synthesis based on morphologi-
cal clique problem or multipartite clique problem, assignment/
allocation, etc.).
Layer 3. Standard solving frameworks, e.g.: (i) Hierarchical
Morphological Multicriteria Design (HMMD) (ranking, combina-
torial synthesis) to design modular systems, (ii) design of a mod-
ular solving strategy (e.g., a partitioning/synthesis heuristic for
complicated problems), (iii) system upgrade, (iv) multi-stage
design (two-level HMMD), and (v) system evolution/forecasting,
and (vi) special multi-stage composite framework (clustering,
assignment/location, multiple choice problem).
Layer 4. Domain-oriented solving framework, e.g.: (a) design of
modular software, (b) information search/retrieval, (c) planning
a marketing strategy, and (d) network design/extension/
imrovement.

Evidently, each element at layer kðk ¼ 2;4Þ is based on (consists
in) a combination of elements at layer (k � 1).

In addition, it is reasonable to point out several basic conceptual
operations:

1. decreasing a problem dimension: clustering;
2. analysis and revelation of the most important elements (e.g.,

system parts, components): selection/ranking, knapsack problem;
3. simplification of a problem, for example: spanning problem,

graph approximation;
4. composition (combination, integration, synthesis): multiple

choice problem, morphological clique problem, multipartite clique
problem, shortest path problem; and

5. planning: scheduling.

4. Composite models

Composite problems/models are mainly considered as multicri-
teria problem formulations.

In multi-objective (multicriteria) shortest path problem several
parameters are associated with each arc. Here Pareto-
efficient (nondominated) paths are searched for. The survey on

Fig. 4. ‘Decision cycle’ and support components.

Fig. 5. Four-layer framework.
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the multi-objective shortest path problems and algorithms are
contained in [107]. The multicriteria shortest path problem is
NP-hard (even in the bicriteria case) (e.g., [30]). The following
algorithms are mainly used: (i) multicriteria Dijkstra’s algorithm
(label setting algorithm), (ii) multicriteria Ford-Bellman’s
algorithm, (iii) dynamic programming, (iv) fast approximation
schemes, (v) genetic algorithms, and (vi) heuristics.

In multi-objective multiple choice problem multiple criteria
description {ci, j} (i.e., "(i, j)) is used and vector objective function
(f1, . . . ,fr) is ([73,103]):

max
Xm

i¼1

Xqi

j¼1

c1
ijxij; . . . ;max

Xm

i¼1

Xqi

j¼1

cp
ijxij; . . . ;max

Xm

i¼1

Xqi

j¼1

cr
ijxij

 !
:

Evidently, here it is necessary to search for Pareto-efficient (by the
vector objective function above) solutions. The following solving
schemes can be used (e.g., [73,103]): (i) heuristic based on multicri-
teria ranking of elements and step-by-step packing the knapsack,
(ii) multicriteria ranking of elements to get their ordinal priorities
and usage of approximate solving scheme (as for knapsack
problem) based on discrete space of system quality (as for morpho-
logical clique problem), (iii) enumerative methods, and (iv) evolu-
tionary algorithms.

The problem design of a hierarchy is a crucial one and can be
based on hierarchical clustering of some initial system elements
(‘Bottom–Up’ approach, Fig. 6) (e.g., [36,53]). In addition, it is pos-
sible to point out other approaches to this problem, for example
(e.g., [56]):

(a) expert judgment as a serious partitioning of a system into
subsystems;

(b) minimum spanning tree problems (e.g., [15,23,30,88,111]);
(c) multicriteria spanning Steiner tree problem (e.g., [75]); and
(d) usage of optimization models (e.g., linear programming) to

design an ‘‘optimal’’ hierarchy (e.g., [110]) and other struc-
ture synthesis techniques (e.g., [112]).

Fig. 7 illustrates spanning tree problems.
Our combinatorial synthesis is based on morphological clique

problem that has a standard brief description (e.g., [46,51]). The
examined composite (modular, decomposable) system consists of
components and their interconnection (IC) or compatibility. Basic
assumptions are the following: (a) the system has a tree-like struc-
ture (generally, it is morphological tree model [52]); (b) a composite
estimate for system quality is considered as integration of compo-
nents (subsystems, parts) qualities and qualities of IC (compatibil-
ity) across subsystems; (c) monotonic criteria for the system and
its components are examined; and (d) quality of system compo-
nents and quality of IC are evaluated upon coordinated ordinal
scales. The designations are: (1) design alternatives (DAs) for nodes
of the model; (2) priorities of DAs (r ¼ 1; k; 1 corresponds to the
best one); (3) ordinal compatibility (IC) for each pair of DAs
(w ¼ 1; l; l corresponds to the best one). Let S be a system consist-
ing of m parts (components): P(1), . . . ,P(i), . . . ,P(m). A set of design

alternatives is generated for each system part above. The problem
is:

Find a composite design alternative S = S(1)w . . .w S(i)w . . . wS(m)
of DAs (one representative design alternative S(i) for each system
component/part PðiÞ; i ¼ 1;m) with non-zero IC between design
alternatives.

A discrete space of the system excellence is based on the
following vector (Fig. 8): NðSÞ ¼ ðwðSÞ; �nðSÞÞ, where w(S) is the min-
imum of pairwise compatibility between DAs which correspond to
different system components (i.e., 8Pj1 and Pj2 ;1 6 j1 – j2 6 m) in
S; �nðSÞ ¼ ðn1; . . . ;nr ; . . . nkÞ, where nr is the number of DAs of the
rth quality in S. As a result, we search for composite decisions
which are nondominated by NðSÞ.

The described problem is NP-hard [43]. Clearly, the compatibil-
ity component of vector NðSÞ can be considered on the basis of a
poset-like scale (as �nðSÞ) as well. In this case, the discrete space
of system excellence will be an analogical lattice [51]. The solving
process can be based on two strategies [46]: (1) enumerative
method, (2) dynamic programming. Note combinatorial synthesis
can be based on versions of multipartite clique problem as well
[18]. Figs. 8–11 illustrate the composition problem. In the numer-

Fig. 6. Design of hierarchy by agglomerative algorithm.

Fig. 7. Illustration for spanning trees.

Fig. 8. Illustration of system quality space.

Fig. 9. Example of composition.
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ical example (DAs priorities are shown in parentheses in Fig. 9,
compatibility estimates are presented in Fig. 10), composite
decisions are: S1 ¼ A2IB1IC2;NðS1Þ ¼ ð2; 2;0;1Þ; S2 ¼ A3I

B1IC3;NðS2Þ ¼ ð3; 1;1;1Þ.
In our multi-layer framework, multicriteria assignment problem

(and multicriteria QAP too) corresponds to the layer of composite
models/procedures as well. Here the objective function is trans-
formed into a vector function (e.g., [17,71,95,96]): ci;j ) ci;j ¼

c1
i;j; . . . ; cr

i;j

� �
. Several solving approaches can be used to search for

Pareto-efficient solutions, for example: (1) enumerative methods,
(2) interactive methods, and (3) heuristics. From the practical
viewpoint, the following generalizations of the assignment/alloca-
tion problems are prospective ones: (i) improvement of allocation
solutions, (ii) re-allocation, (iii) extension of allocation solutions,
and (iv) multi-stage allocation (or dynamical allocation, multidi-
mensional assignment).

5. Basic solving frameworks

Our approach Hierarchical Morphological Multicriteria Design
(HMMD) is described in ([46,51]). HMMD is based on morphological
clique problem. A basic version of HMMD involves the following
phases: (1) design of a tree-like system model; (2) generation of
DAs for leaf nodes of the model; (3) hierarchical selection and com-
bining of DAs into composite DAs for the corresponding higher le-
vel of system hierarchy; and (4) analysis and improvement of
composite DAs (composite decisions). Fig. 12 illustrates the corre-
sponding cascade-like design framework.

The multi-stage design approach (or system trajectory design) is
based on HMMD ([46,51]) (Fig. 13). The multi-stage design process
consists of the following: (1) structuring of stages; (2) combining
of composite decisions for each stage (bottom hierarchical level,
usage of HMMD); and (3) combining a multi-stage decision
trajectory (up-level of the hierarchy, usage of HMMD). In Fig. 13,
illustrative system trajectories are: a0 ¼ hS1

1 ! S2
2 ! S3

2i and
a00 ¼ hS1

3 ! S2
1 ! S3

1i.
Allocation over binary relations scheme was described in [47]

(Fig. 14). Here allocation is examined as mapping of a set of ele-
ments (U) into a set of positions (W) [47]: U)W while taking into
account binary relations. The following binary relations are used:

(a) ‘‘proximity’’: on (U �U): R1, on (W �W): R2; (b) ‘‘correspon-
dence’’: on (U ? W): RU

3 , and on (D ? U): RW
3 . The problem is:

Find mapping (allocation) X:U) D while taking into account the
following: (i) the best realized ‘‘correspondence’’ and (ii) saving ‘‘prox-
imity’’ R1 on R2.

Evidently, the central problem formulation issue is the follow-
ing: measurement of the above-mentioned correspondence and
‘‘proximity’’. This kind of allocation problem can be reduced to mor-
phological design based on morphological clique problem (usage of
HMMD) ([46,56]).

The solving process of some graph-based combinatorial prob-
lems (e.g., traveling salesman problem, Steiner tree problem)
may be based on partitioning/synthesis macroheuristic (i.e., ‘‘divide
and conquer’’ strategy) [46]: (1) clustering of the initial problem
graph into subgraphs; (2) solving the problem for each obtained
subgraph to get a set of solutions (as future design alternatives);
and (3) composition of the global solution from the local solutions
obtained at the previous stage (usage of HMMD).

Four-stage solving scheme (‘‘2-sets and 4-problems framework’’)
was suggested in ([57,66]). Here two interconnected sets of ele-
ments are examined and processed (Fig. 15): (i) elements and (2)
positions. The solving scheme consists of the following stages: (1)
clustering of element set (to decrease the dimension); (2) clustering
of position set (to decrease the dimension); (3) assignment/alloca-
tion of element clusters into position clusters; and (4) selection for
each ‘‘assignment’’ (i.e., pair element cluster-position cluster) an
operation (action) from a specified set of operations (multicriteria
multiple choice problem or morphological clique problem).

Fig. 10. Concentric presentation.

Fig. 11. Space of system quality.

Fig. 12. ‘Cascade-like’ scheme.

Fig. 13. Illustration for multi-stage (trajectory) design.

Fig. 14. Allocation over binary relations.

M.Sh. Levin / Advances in Engineering Software 42 (2011) 1089–1098 1093
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In many applications, a solving strategy can be represented as a
chain of information processing stages or a series–parallel graph of
the stages (i.e., series–parallel solving strategy). In [46], a modular
approach to multicriteria ranking corresponds to this situation.
For each stage above, a set of local algorithms/procedures is gener-
ated (as design alternatives) including their multicriteria descrip-
tion and their compatibility. The design of the solving strategies
is based on HMMD [46].

Our scheme for modeling of combinatorial system evolution and
forecasting is [51]: (1) design of generalized system hierarchy, (2)
design of the system hierarchy for each time stage (for each system
generation); (3) definition of system changes (changes between
neighbor system generations) as a set of change operations; (4)
description of the system change operations: (i) multicriteria
description, (ii) definition of some binary relations over the opera-
tions (e.g., relation of precedence or/and complementarity); and
(5) formulation and solving of a forecasting problem as selection/
composition of system change operations for the future (e.g., knap-
sack-like problems, morphological clique problem).

Design of k-connected network can be considered as well. Let G =
(A,E) be a graph (network), where A is a vertex (node) set, E is an
edge set. Let us consider a special kind of k-connected network:
(i) k ‘‘centers’’, where each ‘‘center’’ is (k + 1)-vertex clique, (ii) each
other vertex has k edges (one edge for each ‘‘center’’). Fig. 16 de-
picts 3-connected structure. A solving scheme to build k-connected
structure is:

Stage 1. Selection of k � (k + 1) vertices for k ‘‘centers’’.
Stage 2. Clustering of the selected vertices to get k clusters as ‘‘cen-

ters’’ (each cluster consists of k + 1 vertices).
Stage 3. Connection of each other vertex with ‘‘centers’’: one connec-

tion for each ‘‘centers’’ (here multiple choice problem or its
modifications can be used).

6. Domain-oriented solving frameworks

The significance of design problems for composition of software
is increasing (e.g., [80,103]). The usage of HMMD for hierarchical
design of modular packaged software is described in ([50,51]):
(1) design of the system hierarchy, (2) generation of design alter-
natives (alternative software modules) for leaf node of the system
model; and (3) ‘Bottom–Up’ design of the packaged software sys-
tem. Analogically, this hierarchical design approach was used for
other design applications: fusion of ordinal decisions ([48,51]), hu-
man–computer systems [49], composite material (e.g., concrete)
[62], product life cycle ([51,62]), telemetry system [65], Web-host-
ing system [68], electronic shopping based on system composition
[54], integrated security system [67], vibration conveyor [46], etc.

In [51], combinatorial planning of medical treatment is described
as hierarchical combination of various treatment operations (med-
icine, physiotherapy, etc.). The process is based on HMMD.

Framework for evaluation and improvement of composite system
is presented in ([51,63]). The framework is based on hierarchical
system modeling, expert judgment, multicriteria ranking, combi-
natorial optimization models, hierarchical integration of ordinal
decisions, modular design of a set of improvement actions
(multiple choice problem or HMMD). A basic illustrative applied
example is targeted to two-floor building ([51,63]). In ([46,50,51,
54,58,73,74]), other applications are described (e.g., information
system, modular software, management system, car).

In [64], design of test inputs and their sequences in multi-
function system testing is suggested (Fig. 17).

Combinatorial design of marketing strategy can be based on four-
stage solving scheme (Fig. 15) [57]. Analogically, this approach was
used in system testing planning [66] and in political marketing
[69].

Network topology design and redesign problems are often crucial
for network-like systems (communication, etc.). Topology design
problems are often targeted to the following basic network kinds,
for example (e.g., [32,82,116]): (i) hierarchical (multi-layer) net-
works and/or (ii) k-connected networks. Clearly, here the following
approaches can be used: (a) direct design of hierarchies, (b) span-
ning structures (e.g., trees, etc.), (c) design of special kinds of struc-
tures (e.g., scheme above, Fig. 16).

The scheme for improvement/upgrade of communication network
can be considered as follows ([73,76]): (1) clustering of network
nodes (to decrease the problem dimension); (2) revelation of net-
work bottlenecks for each network cluster (i.e., revelation of
node(s), where it is necessary to improve electronic facilities), here
multicriteria ranking model can be used; (3) generation of possible
communication facilities for improvement/upgrade (expert judg-
ment, multicriteria ranking); and (4) selection and assignment of

Fig. 15. Illustration for four-stage scheme.

Fig. 16. Illustration for three-connected network. Fig. 17. Solving scheme for system testing.
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communication facilities for each network bottleneck (multicrite-
ria multiple choice problem). Generally network improvement
problems can be based on the following basic actions (e.g., [58]):
(i) addition and allocation of new nodes, (ii) improvement
(upgrade) of old nodes, (iii) addition and allocation of new links,
(iv) improvement (upgrade) of old links, and (v) building of a
new topology (at various layers). Thus, the following solving
schemes are examined (e.g., for an existing network topology):

Scheme 1: Addition of new nodes and/or links.
Scheme 2: Improvement of existing nodes and/or links.
Scheme 3: Integration of schemes 1 and 2.
Scheme 4: Design of a new network topology.

Note special combinatorial optimization problems have been
examined for improvement/extension of communication networks
or hierarchies, for example: hotlink assignment problems (e.g.,
[20,28]), graph augmentation problems (e.g., [25]).

The following approaches are considered for the above-
mentioned solving schemes: (a) an engineering analysis, (b) multi-
criteria analysis and selection, (c) knapsack-like problems
including multicriteria knapsack, (d) allocation problems (includ-
ing basic assignment problem, quadratic assignment problem,
some kinds of multicriteria assignment problems, etc.), (e) approx-
imation/spanning/covering problems, and (f) morphological
combinatorial synthesis problem.

A composite multi-stage framework for multi-source information
retrieval is briefly described in ([45,46]) (Fig. 18): (1) design of a
structural request consisting of several parts (components); (2)
definition of correspondence between request components and
data bases (information sources); (3) limitation of each data base
for the search process (revelation of bounded ‘‘domains’’ in each
data base); (4) searching for in each data base (in the bounded ‘‘do-
mains’’); (5) multicriteria selection of the most important data for
each request component (with a resultant ordinal priority for each
selected information item); (6) description of the request compo-
nent ordinal compatibility (e.g., by some keywords); and (7) de-
sign/synthesis of the interconnected data as morphological clique
or a ‘‘quasi clique’’ (components of the clique correspond to re-
quest parts).

A framework for connection of users and access points in last mile
problem (e.g., communication networks, service networks) can be
based on several combinatorial problems (e.g., [58,59,71]): multi-
criteria selection (connection alternative, access point), multicrite-
ria knapsack problem, assignment/allocation, modular design of a
connection system (multiple choice problem or HMMD).

Combinatorial evolution of standards for multimedia information
is examined in [70] (Fig. 19): MPEG-1 ) MPEG-2 ) MPEG-4 )

Forecast. The scheme of analysis and forecasting is the following:
(1) generalized structure of standard is considered as a morpholog-
ical tree; (2) a set of change operations is generated as an inte-
grated list of changes between MPEG-1 and MPEG-2, MPEG-2 and
MPEG-4; (3) the set of change operations is evaluated upon a set
of criteria and some binary relations (e.g., precedence, complemen-
tarity) are defined over the set; and (4) combinatorial problems
(e.g., multicriteria ranking, clustering, multiple choice problem,
morphological clique problem), which are based on the set of
change operations above, are formulated and solved for forecast-
ing. Similar combinatorial evolution approach has been used for
modeling and forecasting of communication protocols ZigBee
[72]. Here three ZigBee protocol generations were analyzed and
three protocol forecasts were obtained: (i) expert judgment based
forecast, (ii) knapsack problem based forecast, and (iii) multiple
choice problem based forecast (Fig. 20). Analogically, combinato-
rial evolution approach was used for the following composite sys-
tems: DSS for multicriteria ranking ‘COMBI-PC’ [46], requirements
to communication networks [52], and electronic devices [51].

7. Systems architecture issues: brief discussion

Generally, a system architecture (systems architecture) defines
the structure and/or behavior of a system (e.g., [9,31,51,
78,98,113]). In recent years, the significance of systems architec-
ture issues has been increased for various complex and multi-dis-
ciplinary systems. Evidently, modularity is a basic approach to
decease complexity of system design and systems architecture
problems (e.g., [4,5,7,9,35,51]).

On the other hand, it is necessary to take into account stages of
system life cycle: design, redesign/improvement/modification,
testing, maintenance, utilization, recycling. Thus, it is reasonable
to examine composite systems architecture issues while taking
into account system parts (software, mechanics, control, etc.) and
stages of system life cycle.

It may be reasonable to consider the following types of systems
(and corresponding systems architecture issues): (i) a one-disci-
pline system (e.g., software engineering, electronics, information
engineering, aerospace and mechanical engineering, civil engineer-
ing); (ii) a multi-disciplinary system including different parts (con-
trol, mechanics, software, algorithms, information, etc.). Note
contemporary one-discipline systems involve various one-disci-
pline parts.Fig. 18. Illustration for search, selection, synthesis.

Fig. 19. Evolution of multimedia standard.

Fig. 20. Evolution of ZigBee protocol.
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In the paper, a composite framework for analysis, structuring,
and solving of some combinatorial problems, which are useful at
stages of system life cycle (design, testing, maintenance, etc.), has
been described. Evidently, a real usage can require a combination
of various problems (e.g., combinatorial optimization problems,
continuous optimization problems, PDE based modeling, etc.).
Here a four-layer framework for combinatorial problems domain
is described. This four-layer framework can be considered as a
composite component for an architecture to support a multi-
disciplinary system (Fig. 21).

8. Conclusion

In the paper, a four-layer framework for combinatorial prob-
lems/models domain was suggested. The approach is targeted to
applied problems structuring and solving. This is one of the first
steps in the design of the solving environments of this kind.

In the future, it may be reasonable to consider the following
research directions:

(I) Suggested four-layer framework for combinatorial optimiza-
tion problems domain: (1.1) extension of the set of basic
models (layer 1) and composite models (layer 2) by other
significant combinatorial optimization problems (e.g.,
timetabling problems); (1.2) examination of dynamic and/
or on-line problems (layers 1 and 2); (1.3) consideration of
re-configuration combinatorial problems, e.g., re-assign-
ment/re-allocation, re-scheduling, re-routing, re-coloring,
re-packing, re-covering (layer 2); (1.4) usage of problems/
models under uncertainty (e.g., probabilistic and/or fuzzy
estimates) (layers 1 and 2); (1.5) implementation of the sug-
gested architecture as a software tool or a decision support
environment; (1.6) usage of formal methods for modeling
and/or for composition of components, e.g., composite mod-
els/problems (layer 2) and basic solving frameworks (layer
3); (1.7) usage of AI techniques, e.g., for composition of com-
ponents at the layer of standard (basic, typical) solving
frameworks (layer 3); (1.8) study of approaches to design
typical solving frameworks (layer 3) and their transforma-
tion into domain-oriented frameworks (layer 4); and (1.9)
consideration of real world applied examples.

(II) Macro-architectural issues: (2.1) examination of approaches to
integration of problem/discipline domain systems (architec-
tures) into a multi-problem/multi-discipline domain system
(architecture); (2.2) analysis of life cycle issues and/or
‘‘technological systems problems’’ (e.g., design, revelation of
bottlenecks, changes and transformation, development,

forecasting) for systems architectures; and (2.3) consideration
of real-world applied multi-problem/multi-discipline domain
systems.

(III) Education: (3.1) usage of the described four-layer frame-
work in CS/engineering education, (3.2) organization of stu-
dent multi-disciplinary team (s) to learn/study/design of
multi-problem/multi-discipline domain systems (i.e.,
‘‘learning a multi-problem/multi-discipline domain’’).
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